

Sarita Thakoor

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099
Ph: (818)354-3991

e-mail: sarita.thakoor@jpl.nasa.gov

Presentation: The International Conference for Smart Systems and Robotics in Space and Medicine September 6-8, 2000, Houston, Texas

- A MULTIDISCIPLINERY SYSTEM CONCEPT FOR SMALL, DEDICATED, LOW-COST EXPLORERS THAT CAPTURE SOME OF THE KEY FEATURES OF BIOLOGICAL ORGANISMS
 - Small... 100-1000g (useful space/terrestrial exploration functions are implementable* using this mass)
- CONDUCTED WORKSHOP, AUG 19-20, 1998
 - SPONSORED BY NASA/JPL
 - WEBSITE: http://nmp.jpl.nasa.gov/bees/
 - AN ENTHUSIASTIC RESPONSE: OVER 150 PARTICIPANTS
- * JPL DOCUMENT D-14879A, JPL DOCUMENT D-16300A,
 JPL DOCUMENT D-16500, AUTHOR: SARITA THAKOOR

- NATURE'S CREATIONS
 - PRIMARILY ORGANICS BASED
 - EVOLUTION LED SURVIVING DESIGN AND MINIMALIST OPERATIONAL PRINCIPLES ARE INHERENT
 - GEOLOGICAL TIME SCALE HAS BEEN USED FOR EVOLUTION
- BIOMORPHIC ROBOT
 - PRIMARILY INORGANICS BASED, THE INGREDIENTS/MATERIALS AVAILABLE TO US
 - NEEDS TO BE CREATED BY <u>DISTILLING</u> THE PRINCIPLES OFFERED BY NATURAL MECHANISMS.
 CAPTURING THE BIOMECHATRONIC DESIGNS AND MINIMALIST OPERATION PRINCIPLES FROM NATURE'S SUCCESS STRATEGIES
 - DO IT WITHIN A LIFETIME

1st NASA/JPL WORKSHOP ON

BIOMORPHIC EXPLORERS FOR FUTURE MISSIONS

August 19 - 20, 1998 Jet Propulsion Laboratory Pasadena, CA Auditorium 180 - 101

Sponsored by NASA/JPL

Solar System Exploration Program, SESPD

New Millennium Program, NMP

Space Mission Technology Development Program, TAP Center for Integrated Space Microsystems, CISM

sarita.thakoor@jpl.nasa.gov

IMPLEMENTATION

BIOMORPHIC EXPLORERS MULTITERRAIN RECONFIGURABLE LEGGED EXPLORER NARROW FOOTPRINT WIDE FOOTPRINT

sarita.thakoor@jpl.nasa.gov

MULTITERRAIN Biomorphic Explorer

Neural connections mapped on 64 Neural Network (NN) Chip

JPL's 64 NN chip characteristics:

- Low Weight (5 g)
- Small Size (1 cm x 1 cm)
- Low Power (12 mW)
- High Speed (~250 ns)
- Programmable Neural Network Architecture

Distributed Control Operational Schematic → DATA OUT SMALL POWER SOURCE TELECOM RENEWABLE SOURCE **PAYLOAD SENSOR** SENSOR INPUT OR **BIOMORPHIC ADAPTIVE** KNOWLEDGE OF CONTROL STRATEGY TERRAIN CONDITIONS RECONFIGURABILITY GENERATOR RECONFIGURABLE **DIRECT DRIVE MOBILE UNITS IMPULSES TO ACTUATORS FEEDBACK**

WORM ROBOT FOR IN-SITU EXPLORATION

EXTENDED CONFIGURATION

CONTRACTED CONFIGURATION

*Z. Gorjian and S. Thakoor, "Biomorphic Explorers Animation Video", 1st NASA/JPL WORKSHOP ON BIOMORPHIC EXPLORERS FOR FUTURE MISSIONS, August 19-20, 1998; Jet Propulsion Laboratory, Pasadena, CA

BIOMORPHIC EXPLORERS: VERSATILE MOBILITY

SURFACE/ SUBSURFACE

FLYERS

- Extended reach over all kinds of terrain
- Unique perspective for IMAGING, SPECTRAL SIGNATURE, ATMOSPHERIC MEASUREMENTS
- Deploy/Distribute Payloads
- Many biomorphic explorers(seedwing flyers, crawlers, burrowers, gliders etc) work in cooperation with larger UXV'S to enable new missions and achieve successfully currently UNATTAINABLE MISSIONS

Plant world inspired payload distribution methods

- Simpler and smaller than parachute on small scale for dispersion of sensors and small surveillance instruments.
- Controlled Descent Rate ~ 15 m/s (on surface of Mars)

(a)

Maple Seed Samara

Design Goals:

- •Small total mass, ~100 g
- •High payload mass fraction, > 80%
- •Captures key features of controlled and stable descent as observed in Samaras, such as maple seeds
- •Reliable, minimal infrastructure
- unobstructed view overhead for atmospheric measurements
- simple construction, few constituent parts

(b)

Dandelions

Biomorphic Gliders

- Small, simple, low-cost system ideal for distributed measurements, reconnaissance and wide-area dispersion of sensors and small experiments.
- Payload mass fraction 50% or higher.

- small mass (100 g 1000 g)
- · low radar cross section
- larger numbers for given payload due to low mass
- precision targeting to destination
- amenable to cooperative behaviors
- missions use potential energy: deploy from existing craft at high altitude
- Captures features of soaring birds, utilizing rising currents in the environment
- Adaptive Behavior
- Self Repair features

- •Bio-morphic explorers constitute a new paradigm in mobile systems that capture key features and mobility attributes of biological systems, to enable new scientific endeavors.
- •The general premise of biomorphic systems is to <u>distill</u> the principles offered by natural mechanisms to obtain the selected features/functional traits and <u>capture</u> the biomechatronic designs and minimalist operation principles from nature's success strategies.
- •Bio-morphic explorers are a unique combination of versatile mobility controlled by adaptive, fault tolerant biomorphic algorithms to autonomously match with the changing ambient/terrain conditions.
- •Significant scientific payoff at a low cost is realizable by using the potential of a large number of such cooperatively operating biomorphic systems.
- •Biomorphic explorers can empower the human to obtain extended reach and sensory acquisition capability from locations otherwise hazardous/inaccessible

BIOMORPHIC MISSIONS

- •Biomorphic Missions are co-operative missions that make synergistic use of existing/ conventional surface and aerial assets along with biomorphic robots.
- •Just as in nature, biological systems offer a proof of concept of symbiotic co-existence, the intent here is to capture/imbibe some of the key principles/success strategies utilized by nature and capture them in our biomorphic mission implementations.
- •Specific science objectives targeted for these missions include
 - close-up imaging for identifying hazards and slopes,
 - assessing sample return potential of target geological sites,
 - atmospheric information gathering by distributed multiple site measurements, and
 - deployment of surface payloads such as instruments/biomorphic surface systems or surface experiments.

Science Requirements

- •Orbiter provides imaging perspective from ~ 700 Km height with resolution ~ 1.5 m/pixel; lander mast imagery is view from ~ 1-2 m height, the essential mid range 50m-1000m altitude perspective is as yet uncovered and is an essential science need. Imaging from this mid-range is required to obtain details of surface features/topography, particularly to identify hazards and slopes for a successful mission)
 - Close-up imagery of sites of interest (~ 5 10 cm resolution)
 - 1-10 Km range, wide area coverage
 - Distributed Measurements across the entire range
 - · In-situ surface mineralogy.
- Candidate instruments include
 - Camera (hazard & slope identification by close-up imagery)
 - Meteorological suite (in-flight atmospheric measurements)
 - Microphone to hear surface sounds, wind and particle impact noises
 - Electrical Measurement of surface conductivity
 - Accelerometer Measurement of surface hardness
 - Seismic measurement (accelerometers)

- An auxiliary payload of a Mars Lander (2-10kg)
- Micro-gliders (4 20) launched/deployed from the Lander
- Lander serves as a local relay for imagery/data downlink
- Micro-Glider provides :
 - Close-up imagery of sites of interest (~ 5-10 cm resolution)
 - Deploys Surface payload/experiments (20g 500 g)
 - In-flight Atmospheric Measurements
 - Candidate instruments
 - Camera (hazard & slope identification by close-up imagery)
 - Meteorological suite (in-flight atmospheric measurements)
 - Microphone to hear surface sounds, wind and particle impact noises
 - Electrical Measurement of surface conductivity
 - Accelerometer Measurement of surface hardness
 - Seismic measurement (accelerometers)
- 50m-500m height, unique and essential perspective for imaging
 - 1-10 Km range, wide area coverage very quickly
 - useful close-up imagery and surface payload deployment
- 2003/2005 Missions Scout Missions, Sample Return Missions 2007 and beyond

Surface Launched Mars Microflyers: Applications

- Contamination Free Launch options
 - •Spring launched (massive, KE left over, complex possibly damaging recoil)
 - Electric launch options (power hungry)
 - •electrically driven propeller (Mars atmosphere too thin)
 - ·electromagnetic gun
 - •Inflate and release a balloon (complicated mechanism, thin atmosphere a challenge, susceptible to winds
 - •Pneumatic, compressed gas launch (simple mechanism, simple recoil, leading candidate)
- Rocket Boosted launch (contaminants, HCI, nitrates etc.) a good option for application such as scouting where contamination is not an issue

Science Objectives:

- Near Term 2003/2005
 - Image surface topography
 - Characterize terrain around lander
 - Identify rocks of interest for rover
 - Distribution of Instruments/Experiments/Surface explorers to targeted sites
- 2005 2007
 - Identify and collect sample enabling sample return
- Long Term 2007 and beyond
 - Co-operative Operation of a multitude of Explorers together to obtain imagery, and deploy surface payloads
 - Astronaut Launched Microflyers: empowering the human to obtain extended reach and sensory acquisition capability from locations otherwise hazardous/inaccessible

JPL neural network chip design enables the 3DANN technology that delivers unprecedented processing speed for ATR: (64 convolutions of 64x64 masks in 16 msec vs. 2 hours on state-of-the-art workstations)

Insects operating cooperatively:

Nakamura and Kurumatani, 1995 Kubo, 1996

Ants' elaborate communication method with pheromone trails

Karl von Frisch, 1965 Wehner and Rossel, 1985 Barbara Shipman, 1997

Honeybee's recruitment dance with the sun as a celestial reference

SCIENCE APPLICATIONS

- •CLOSE-UP IMAGING, EXOBIOLOGY SITE SELECTIONATMOSPHERIC INFO GATHERING
- **•DISTRIBUTED MULTIPLE SITE MEASUREMENTS**
- **•DEPLOY PAYLOAD: INSTRUMENTS/CRAWLERS**
- SAMPLE RETURN RECONNAISSANCE
- •EXTEND THE SENSORY ACQUISITION CAPABILITY OF THE ASTRONAUT

SCIENCE APPLICATIONS

....WHICH WOULD BE ENABLED/ENHANCED BY SUCH EXPLORERS.....

- VALLES MARINERIS EXPLORATION
 - ONE SINGLE SITE RICH IN GEOLOGIC UNITS
 - STUDY STRATIGRAPHIC COLUMN TOP TO BOTTOM ALONG THE CANYON WALL
 - OPTIMUM SCIENCE SAMPLE SITE
 -imager, temperature sensor, pressure sensor, sniffer: e-nose, individual gases, elements, etc.
- SCOUTING FOR CONDITIONS COMPATIBLE WITH LIFE TO LEAD US TO THE SPOTS THAT MAY HOLD SAMPLES OF EXTINCT/EXTANT LIFE
 - WIDE-AREA SEARCH WITH INEXPENSIVE EXPLORERS EXECUTING DEDICATED SENSING FUNCTIONS
 -Individual gases, sniffer: e-nose, chemical reactions, pyrotechnic test, elements, specific amino acids, signatures of prebiotic chemistry, etc.
- GEOLOGICAL DATA GATHERING:
 - DISTRIBUTED TEMPERATURE SENSING
 - SEISMIC ACTIVITY MONITORING
 - VOLCANIC SITE
 -Multitude of explorers working in a cascade or daisy-chain fashion cooperatively to fulfill task

- Distributed Aerial Measurements
 - Ephemeral Phenomena
 - Extended Duration using Soaring
- Delivery and lateral distribution of Agents (sensors, surface/subsurface crawlers, clean-up agents
- Close-up Imaging, Site Selection
 - Meteorological Events: storm watch
 - Reconnaissance
 - Biological Chemical Warfare
 - Search and Rescue etc
 - Surveillance
 - Jamming

- PAYOFF
- BIOMORPHIC EXPLORERS, IN COOPERATION WITH CURRENT EXPLORATION PLATFORMS CAN ENABLE
 - EXPLORATION OF CURRENTLY INACCESSIBLE AND/OR HAZARDOUS LOCATIONS
 - MUCH BROADER COVERAGE OF EXPLORATION SITES
 - EXPLORATION AT LOWER COST

ACKNOWLEDGMENTS

The research described in this document was carried out by the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

JET PROPULSION LABORATORY

INDUSTRY: RAYTHEON, AEROVIRONMENT, SONY, XEROX, PIONEER

NATIONAL LABS: LANL, SRI, ORNL, SANDIA

ACADEMIA: MINNESOTA, BERKELEY, CALTECH, PENN STATE, VANDERBILT, USC, UCLA, ARIZONA, ROCHESTER, MONTANA, CORNELL, NAGOYA, JAPAN

OTHER NASA CENTERS:GSFC, AMES, LANGLEY, JSC

Acknowledgements

JPL

Brett Kennedy/Terry Huntsberger: Mechanical Design & Control

John Michael Morookian: Electrical design and system Integration

Gerhard Klose: Structure

Ken Klassen/T.Cunningham: Camera

Anil Thakoor: Image Processing

Dave Bell (& CALTECH): Telecom

Terry Martin: Atmospheric Science

Frank Palluconi: Science Imagery

Satish Krishnan/Robert Manning: Lander/Rover